1 Fig. 6 shows a lean-to greenhouse ABCDHEFG. With respect to coordinate axes Oxyz, the coordinates of the vertices are as shown. All distances are in metres. Ground level is the plane $z=0$.

Fig. 6
(i) Verify that the equation of the plane through A, B and E is $x+6 y+12=0$.

Hence, given that F lies in this plane, show that $a=-2 \frac{1}{3}$.
(ii) (A) Show that the vector $\left(\begin{array}{r}1 \\ -6 \\ 0\end{array}\right)$ is normal to the plane DHC.
(B) Hence find the cartesian equation of this plane.
(C) Given that G lies in the plane DHC , find b and the length FG .
(iii) Find the angle EFB.

A straight wire joins point H to a point P which is half way between E and F . Q is a point two-thirds of the way along this wire, so that $\mathrm{HQ}=2 \mathrm{QP}$.
(iv) Find the height of Q above the ground.

2 Fig. 7 shows a tetrahedron ABCD . The coordinates of the vertices, with respect to axes Oxyz, are $\mathrm{A}(-3,0,0), \mathrm{B}(2,0,-2), \mathrm{C}(0,4,0)$ and $\mathrm{D}(0,4,5)$.

Fig. 7
(i) Find the lengths of the edges AB and AC , and the size of the angle CAB . Hence calculate the area of triangle ABC .
(ii) (A) Verify that $4 \mathbf{i}-3 \mathbf{j}+10 \mathbf{k}$ is normal to the plane ABC .
(B) Hence find the equation of this plane.
(iii) Write down a vector equation for the line through D perpendicular to the plane $A B C$. Hence find the point of intersection of this line with the plane $A B C$.

The volume of a tetrahedron is $\frac{1}{3} \times$ area of base \times height.
(iv) Find the volume of the tetrahedron ABCD .

3 (i) Find a vector equation of the line l joining the points $(0,1,3)$ and $(-2,2,5)$.
(ii) Find the point of intersection of the line l with the plane $x+3 y+2 z=4$.
(iii) Find the acute angle between the line l and the normal to the plane.

